According to BP's Statistical Review of World Energy, world primary energy consumption reached 13,147 million tons of oil equivalent in 2015 (BP 2016). From 2010 to 2015, world primary energy consumption grew at an average annual rate of 1.5 percent.
World oil consumption (including biofuels) was 4,331 million tons in 2015, accounting for 33 percent of the world energy consumption. From 2010 to 2015, world oil consumption grew at an average annual rate of 1.2 percent.
World natural gas consumption was 3,135 million tons of oil equivalent in 2015, accounting for 24 percent of the world energy consumption. From 2010 to 2015, world natural gas consumption grew at an average annual rate of 1.7 percent.
World coal consumption was 3,840 million tons of oil equivalent in 2015, accounting for 29 percent of the world energy consumption. From 2010 to 2015, world coal consumption grew at an average annual rate of 1.1 percent.
World consumption of nuclear electricity was 583 million tons of oil equivalent in 2015, accounting for 4 percent of the world energy consumption. From 2010 to 2015, world consumption of nuclear electricity declined at an average annual rate of 1.4 percent.
World consumption of hydro, geothermal and biomass electricity was 1,010 million tons of oil equivalent in 2015, accounting for 8 percent of the world energy consumption. From 2010 to 2015, world consumption of hydro, geothermal and biomass electricity grew at an average annual rate of 3.0 percent.
World consumption of wind and solar electricity was 248 million tons of oil equivalent in 2015, accounting for 2 percent of the world energy consumption. From 2010 to 2015, world consumption of wind and solar electricity grew at an average annual rate of 23.9 percent.
According to World Bank and IMF data, gross world product (global economic output) was 107.0 trillion dollars (in 2011 constant international dollars) in 2015. From 2010 to 2015, global economic output grew at an average annual rate of 3.4 percent.
World average energy efficiency was 8,136 dollars per ton of oil equivalent in 2015. From 2010 to 2015, world average energy efficiency grew at an average annual rate of 1.8 percent.
World carbon dioxide emissions from fossil fuels burning were 33.5 billion tons in 2015. From 2010 to 2015, world carbon dioxide emissions grew at an average annual rate of 1.2 percent.
World oil consumption (including biofuels) was 4,331 million tons in 2015, accounting for 33 percent of the world energy consumption. From 2010 to 2015, world oil consumption grew at an average annual rate of 1.2 percent.
World natural gas consumption was 3,135 million tons of oil equivalent in 2015, accounting for 24 percent of the world energy consumption. From 2010 to 2015, world natural gas consumption grew at an average annual rate of 1.7 percent.
World coal consumption was 3,840 million tons of oil equivalent in 2015, accounting for 29 percent of the world energy consumption. From 2010 to 2015, world coal consumption grew at an average annual rate of 1.1 percent.
World consumption of nuclear electricity was 583 million tons of oil equivalent in 2015, accounting for 4 percent of the world energy consumption. From 2010 to 2015, world consumption of nuclear electricity declined at an average annual rate of 1.4 percent.
World consumption of hydro, geothermal and biomass electricity was 1,010 million tons of oil equivalent in 2015, accounting for 8 percent of the world energy consumption. From 2010 to 2015, world consumption of hydro, geothermal and biomass electricity grew at an average annual rate of 3.0 percent.
World consumption of wind and solar electricity was 248 million tons of oil equivalent in 2015, accounting for 2 percent of the world energy consumption. From 2010 to 2015, world consumption of wind and solar electricity grew at an average annual rate of 23.9 percent.
According to World Bank and IMF data, gross world product (global economic output) was 107.0 trillion dollars (in 2011 constant international dollars) in 2015. From 2010 to 2015, global economic output grew at an average annual rate of 3.4 percent.
World average energy efficiency was 8,136 dollars per ton of oil equivalent in 2015. From 2010 to 2015, world average energy efficiency grew at an average annual rate of 1.8 percent.
World carbon dioxide emissions from fossil fuels burning were 33.5 billion tons in 2015. From 2010 to 2015, world carbon dioxide emissions grew at an average annual rate of 1.2 percent.
World average emissions intensity of gross world product was 0.313 kilogram of carbon dioxide emissions per dollar of gross world product. From 2010 to 2015, world average emissions intensity of gross world product declined at an average annual rate of 2.1 percent.
World average emissions intensity of primary energy consumption was 2.55 tons of carbon dioxide emissions per ton of oil equivalent. From 2010 to 2015, world average emissions intensity of primary energy consumption declined at an average annual rate of 0.3 percent.
World average emissions intensity of primary energy consumption was 2.55 tons of carbon dioxide emissions per ton of oil equivalent. From 2010 to 2015, world average emissions intensity of primary energy consumption declined at an average annual rate of 0.3 percent.
------
The purpose of this annual report is to provide an analytical framework evaluating the development of world energy supply and its impact on the global economy.
The report projects the world supply of oil, natural gas, coal, nuclear, hydro, wind, solar, and other energies from 2016 to 2050. It also projects the overall world energy consumption, gross world economic product, and energy efficiency from 2016 to 2050 as well as carbon dioxide emissions from fossil fuels burning from 2016 to 2100.
The basic analytical tool is Hubbert Linearization, first proposed by American geologist M. King Hubbert (Hubbert 1982). Despite its limitations, Hubbert Linearization provides a useful tool helping to indicate the likely level of ultimately recoverable resources under the existing trends of technology, economics, and geopolitics. Other statistical methods and some official projections will also be used where they are relevant.
Ref:
Comments